The RWTH/UPB/FORTH System Combination for the 4th CHiME Challenge Evaluation
نویسندگان
چکیده
This paper describes automatic speech recognition (ASR) systems developed jointly by RWTH, UPB and FORTH for the 1ch, 2ch and 6ch track of the 4th CHiME Challenge. In the 2ch and 6ch tracks the final system output is obtained by a Confusion Network Combination (CNC) of multiple systems. The Acoustic Model (AM) is a deep neural network based on Bidirectional Long Short-Term Memory (BLSTM) units. The systems differ by front ends and training sets used for the acoustic training. The model for the 1ch track is trained without any preprocessing. For each front end we trained and evaluated individual acoustic models. We compare the ASR performance of different beamforming approaches: a conventional superdirective beamformer [1] and an MVDR beamformer as in [2], where the steering vector is estimated based on [3]. Furthermore we evaluated a BLSTM supported Generalized Eigenvalue beamformer using NN-GEV [4]. The back end is implemented using RWTH’s open-source toolkits RASR [5], RETURNN [6] and rwthlm [7]. We rescore lattices with a Long Short-Term Memory (LSTM) based language model. The overall best results are obtained by a system combination that includes the lattices from the system of UPB’s submission [8]. Our final submission scored second in each of the three tracks of the 4th CHiME Challenge.
منابع مشابه
Deep Beamforming and Data Augmentation for Robust Speech Recognition: Results of the 4th CHiME Challenge
Robust automatic speech recognition in adverse environments is a challenging task. We address the 4 CHiME challenge [1] multi-channel tracks by proposing a deep eigenvector beamformer as front-end. To train the acoustic models, we propose to supplement the beamformed data by the noisy audio streams of the individual microphones provided in the real set. Furthermore, we perform data augmentation...
متن کاملThe RWTH 2009 quaero ASR evaluation system for English and German
In this work, the RWTH automatic speech recognition systems for English and German for the second Quaero evaluation campaign 2009 are presented. The systems are designed to transcribe web data, European parliament plenary sessions and broadcast news data. Another challenge in the 2009 evaluation is that almost no in-domain training data is provided and the test data contains a large variety of ...
متن کاملThe System Combination RWTH Aachen: SYSTRAN for the NTCIR-10 PatentMT Evaluation
This paper describes the joint submission by RWTH Aachen University and SYSTRAN in the Chinese-English Patent Machine Translation Task at the 10th NTCIR Workshop. We specify the statistical systems developed by RWTH Aachen University and the hybrid machine translation systems developed by SYSTRAN. We apply RWTH Aachen’s combination techniques to create consensus hypotheses from very different s...
متن کاملA fragment-decoding plus missing-data imputation ASR system evaluated on the 2nd CHiME Challenge
This paper reports on our entry to the small-vocabulary, moving-talker track of the 2nd CHiME challenge. The system we employ is based on the one that we developed for the 1st CHiME challenge, the latest results of which are reported in (Ma and Barker, 2012). Our motivation is to benchmark the system on the new CHiME challenge and to measure the extent to which it is robust against speaker moti...
متن کاملThe RWTH machine translation system for IWSLT 2007
The RWTH system for the IWSLT 2007 evaluation is a combination of several statistical machine translation systems. The combination includes Phrase-Based models, a n-gram translation model and a hierarchical phrase model. We describe the individual systems and the method that was used for combining the system outputs. Compared to our 2006 system, we newly introduce a hierarchical phrase-based tr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016